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Supplementary Material
Learning the Depths of Moving People by Watching Frozen People
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Paper ID 3419

This document includes the following:

1. Examples of filtered images and human keypoint images from our MannequinChallenge dataset (using our data
generation pipeline) and examples of demonstrating our proposed depth cleaning approach, (see Section 3 in the paper).

2. Mathematical details of our depth prediction models (described in Section 4 in the main paper).

3. Implementation details of our training and experiments.

4. Qualitative comparison to parametric human model fitting.

1. Dataset
Examples of filtered images Figure 1 and Figure 2 show examples of images filtered out by our data creation pipeline from
the raw MannquinChallenge video clips. These examples include images captured by fisheye cameras, and images with large
regions of synthetic background or moving objects.

Examples of human keypoints images Figure 3 shows example images of human keypoints predicted by Mask-RCNN [4].
For visualization purpose, we perform morphological dilation to original keypoint image to make each keypoint location more
visisble. Moreover, we use different color to visualize different human joints keypoints.

Figure 1: Examples of filtered images. First row shows the images captured by fisheye cameras and second row shows the
images with synthetic background;
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Figure 2: Examples of filtered images. Each column depicts an example of filtered images from our pipeline due to moving
objects.

Figure 3: Examples of keypoints images. Top rows depicts examples of original images and bottom row depicts corresponding
human keypoint images with different color indicating different human joints.

Depth cleaning examples Figure 4 shows examples of our depth cleaning method for MVS depth, as described in Section 3
of the paper. The regions circled in yellow show MVS depth with and without our proposed depth cleaning method based
on Equation 1 in the paper. Our cleaning method removes incorrect depth values. These depth maps serve as supervision in
training, thus careful filtering has large impact on our performance, as demonstrated in our TUM RGBD experiments.
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2. Derivations and additional mathematical details
We provide detailed derivations of our inputs to the depth prediction model (Section 4 in the paper).
Suppose we have relative camera pose R ∈ SO(3), t ∈ R3 from source image view Is to reference image view Ir with

common intrinsic matrix K estimated from visual SfM system. In addition, we also compute forward flow F from Ir to Is,
and backward flow B from Is to Ir. Let p denote the 2D pixel position in Ir, and p′ = p + F (p) the corresponding 2D pixel
position in Is that is warped by F (p); we denote such positions in either R2 pixel space or R3 homogeneous space based on
context.

2.1. Depth from motion parallax
We estimate our initial input depth from optical flow and camera motion using Plane-plus-Parallax (P+P) representation [6].

Note that P+P is typically used to estimate the structure component of the scene with respect to a reference plane, either a
scene plane or a virtual one. In our case, we use P+P as means to cancel out the relative camera rotation and to efficiently
invert the flow field to a depth map. Therefore, we set the reference plane to be at infinity.

Let Π denote a real or virtual planar surface, and let d′Π denote the distance between camera center of source image Is and
plane Π, H is distance between the 3D scene point corresponding to 2D pixel p and Π. It can be shown (See Appendix of [6]
for complete math derivations) that

p = pw +
H

Dpp(p)

t[3]

d′Π
pw −

H

Dpp(p)d′Π
Kt (1)

= pw +
H

Dpp(p)d′Π
(t[3]pw −Kt) (2)

where Dpp(p) is initial estimated depth at p in reference image Ir; t[3] is the third component of translation vector t, and
pw is the 2D image point in Ir that results from inverse warping the corresponding 2D pixel p′ = p + F (p) in Is by a
homography A:

pw =
Ap′

aT3 p
′ (3)

where A = K(R+ t
n′
T

d′Π
)K−1

where aT3 is the third row of A, and n′ is normal of plane Π with respect to the camera of source image Is. Note that the
original paper [6] divides the P+P representation into two cases depending on whether Tz = 0, but we combine these two
cases into one equation shown in Equation 2 by simple algebraic manipulations.

Now, if we set plane Π at infinity, using L’Hôpital’s rule, we can cancel out H and d′Π and obtain following equations:

p = pw +
t[3]pw −Kt

Dpp(p)
(4)

Dpp(p) =
||t[3]pw −Kt||2
||p− pw||2

,

where pw =
A′p′

a′3
Tp′

and A′ = KRK−1

We use P+P representation to estimate initial depth because we found it more efficient and robust for dense depth estimation
compared with standard triangulation methods, which are usually used with sparse correspondences. Equation 4 can also be
extended to multiple frames with importance weights by formulating it as a weighted least square problem.

2.2. Confidence
Recall the confidence value at each pixel p in the non-human (environment) regions E of the image is defined as:

C(p) = Clr(p)Cep(p)Cpa(p) (5)

3
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Clr is a confidence based on left-right consistency between the estimated forward and backward flow fields. That is,
Clr(p) = max

(
0, 1− r(p)2

)
, where r(p) = ||F (p) +B(p′)||2 is the forward-backward optical flow warping error.

Cep gives low confidence to pixels where the flow field and the epipolar constraint disagree [3]. Specifically, Cep(p) =
max

(
0, 1− (γ(p)/γ̄)2

)
, where geometric epipolar distance γ(p) is defined as:

γ(p) =
|p′TFp|√

(Fp)2
[1] + (Fp)2

[2]

(6)

where F = K−T [t]×RK
−1 is the fundamental matrix and (Fp)[i] is the ith element of Fp.

Cpa(p) is a confidence based on parallax angles: Cpa(p) = 1−
(

min(β̄,β(p))−β̄
β̄

)2

[11], where β(p) = cos−1
(

b(p)b(p′)
||b(p)||2||b(p′)||2

)
,

and b(p) = K−1p is a bearing vector at p in Ir, and b(p′) = K−1p′ is a bearing vector at p′ in Is.

2.3. Losses
Our loss is computed on log-space depth values and consists of three terms (Section 4.3 in the paper):

Lsi = LMSE + α1Lgrad + α2(L1
sm + L2

sm). (7)

Scale-invariant MSE. LMSE denotes the scale-invariant mean square error (MSE) adopted from [2]. This loss term computes
the squared, log-space difference in depth between two pixels in the prediction and the same two pixels in the ground-truth,
averaged over all pairs of valid pixels. Intuitively, it penalizes differences in the ratio of depth between two predicted depth
values relative to the same ratio in the ground truth:

LMSE =
1

N

∑
p∈I

R(p)2 − 1

N

∑
p∈I

R(p)

2

(8)

where R(p) = log D̂(p)− logDgt(p), and D̂ is predicted depth and Dgt is ground truth depth.
Multi-scale gradient term. We use a multi-scale gradient term to encourage smoother gradient changes and sharper depth
discontinuities in the predicted depth images [10]:

Lgrad =

S−1∑
s=0

1

Ns

∑
p∈Is

(|∇xRs(p)|+ |∇yRs(p)|) (9)

where subscript s of Rs and Is indicates scale s and Ns is the number of valid pixel at scale s.

Multi-scale, edge-aware smoothness terms. To encourage smooth interpolation of depth in texture-less regions where MVS
fails to recover depth, we add a simple smoothness term at multiple scales based on the first- and second-order derivatives of
images [12]:

L1
sm =

S−1∑
s=0

1

Ns2s

∑
p∈Is

exp(−|∇Is(p)|)|∇ log D̂(p)| (10)

L2
sm =

S−1∑
s=0

1

Ns2s

∑
p∈Is

exp(−|∇2Is(p)|)|∇2 log D̂(p)| (11)

We create S = 5 scale image pyramids using nearest-neighbor down-sampling for both multi-scale gradient and smoothness
terms.
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2.4. Error Metrics
Recall in Section 5 of our main paper, we measure 5 different error metrics based on scale-invariant RMSE (si-RMSE).

Here we provide definition of each error metric. Notice we can use similar algebraic manipulations to those proposed in [9] to
evaluate all terms in time linear in the number of pixels.

Recall that D̂ is the predicted depth and Dgt is the ground truth depth, and we define R(p) = log D̂(p) − logDgt(p).
Recall we also define human regions asH with Nh valid depth, non-human (environment) regions as E with Ne valid depth,
and full image region as I = H ∪ E with N = Ne +Nh valid depth.

Specifically, si-full measures si-RMSE between all pairs of pixels, giving the overall accuracy across the entire image and
is defined as follows:

si-full =
1

N2

∑
p∈I

∑
q∈I

(
(log D̂(p)− D̂(q))− (logDgt(p)−Dgt(q))

)2

(12)

=
1

N2

∑
p∈I

∑
q∈I

(R(p)−R(q))
2 (13)

=
1

N2

∑
p∈I

∑
q∈I

R(p)2 +R(q)2 − 2R(p)R(q) (14)

=
1

N2

N∑
p∈I

R(p)2 +N
∑
q∈I

R(q)2 − 2
∑
p∈I

R(p)
∑
q∈I

R(q)

 (15)

=
2

N2

N∑
p∈I

R(p)2 −
∑
p∈I

R(p)
∑
q∈I

R(q)

 (16)

si-env measures pairs of pixels in non-human regions E , giving accuracy of the environment, and is defined as:

si-env =
1

N2
e

∑
p∈E

∑
q∈E

(
(log D̂(p)− D̂(q))− (logDgt(p)−Dgt(q))

)2

(17)

=
1

N2
e

∑
p∈E

∑
q∈E

(R(p)−R(q))
2 (18)

=
2

N2
e

Ne∑
p∈E

R(p)2 −
∑
p∈E

R(p)
∑
q∈E

R(q)

 (19)

si-hum measures pairs where one pixel lies in the human regionH and one lies anywhere in the image, giving accuracy for
people, and is defined as :

si-hum =
1

NNh

∑
p∈H

∑
q∈I

(
(log D̂(p)− D̂(q))− (logDgt(p)−Dgt(q))

)2

(20)

=
1

NNh

∑
p∈H

∑
q∈I

(R(p)−R(q))
2 (21)

=
1

NNh

∑
p∈H

∑
q∈I

R(p)2 +R(q)2 − 2R(p)R(q) (22)

=
1

NNh

N ∑
p∈H

R(p)2 +Nh
∑
q∈I

R(q)2 − 2
∑
p∈H

R(p)
∑
q∈I

R(q)

 (23)

(24)

Furthermore, si-hum can further be divided into two error measures: si-intra measures si-RMSE within H, or human

5
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accuracy independent of the environment, and is defined as

si-intra =
1

N2
h

∑
p∈H

∑
q∈H

(
(log D̂(p)− D̂(q))− (logDgt(p)−Dgt(q))

)2

(25)

=
1

N2
h

∑
p∈H

∑
q∈H

(R(p)−R(q))
2 (26)

=
2

N2
h

Nh ∑
p∈H

R(p)2 −
∑
p∈H

R(p)
∑
q∈H

R(q)

 (27)

si-inter measures si-RMSE between pixels inH and in E , or human accuracy w.r.t. the environment and is defined as:

si-inter =
1

NeNh

∑
p∈H

∑
q∈E

(
(log D̂(p)− D̂(q))− (logDgt(p)−Dgt(q))

)2

(28)

=
1

NeNh

∑
p∈H

∑
q∈E

(R(p)−R(q))
2 (29)

=
1

NeNh

∑
p∈H

∑
q∈E

R(p)2 +R(q)2 − 2R(p)R(q) (30)

=
1

NeNh

Ne ∑
p∈H

R(p)2 +Nh
∑
q∈E

R(q)2 − 2
∑
p∈H

R(p)
∑
q∈E

R(q)

 (31)

(32)

3. Implementation Details
We use FlowNet2.0 [5] to estimate optical flow because we found it handles large displacements well and preserves sharp

motion discontinuities. We use Mask-RCNN [4] to generate human masks and optionally human keypoints. The predicted
masks sometimes have errors and miss small parts of people, so we apply a morphological dilation operation to the binary
human masks to ensure that the masks are conservative and include all the human regions. We normalize human keypoints
between 0 and 1 before we feed them into network, if needed.

Our networks architecture is similar to that of [1] except that we replace all the nearest neighbor upsampling layers with
bilinear upsampling layers since we found such simple modification could produce sharper depth boundaries while slightly
improve performance. We refer readers to [1] for full details of network architectures.

Our network predicts log depth in both training and inference stages. During training, we randomly normalize the input
log-depth before feeding it to the network by subtracting a value sampled from between the 40 and 60 percentile of valid
input logDpp. During inference, we normalize input log-depth by subtracting the median of log(Dpp). Additionally, during
training, we randomly set to zero the initial input depth and confidence (with probability 0.1) to tackle the potential situation
where input depth is not available (e.g. camera is nearly static or estimated optical flow is completely incorrect) in inference
stage. When we input human keypoints into network, we also use the depth from motion parallax Dpp with high confidence
(Clr > 0, Cep > 0 and Cpa > 0.5) at these locations as ground truth if MVS depth DMVS is not available.

For our experiments we train our networks for 20 epochs from scratch using the Adam [8] optimizer with initial learning
rate of 0.0004 and we halve the learning rate every 8 epochs. During training, we firstly downsample all images to a resolution
of 532x299, use a mini-batch size of 16, and perform data augmentation though random flips and central crops so that input
image resolution to the networks is 512x288. We set hyperparameters in our loss terms α1 = 0.5, α2 = 0.05 based on
our validation set. For the experiments on the TUM RGBD dataset, we downsample ground truth to 512x384 and perform
morphological erosion with radius 2 to ground truth for all evaluations since we found depth from RGBD sensor is not well
aligned with image edges due to synchronization and small regions of depth captured by depth sensors are usually attributed to
outliers due to sensor noise. Additionally, we downsample images to 512x384 for our network, and we downsample input
images to provided default image resolutions for other state-of-the-art single-view and motion stereo models (since we found
input default resolutions always produce the best performance for other methods) and upsample their depth predictions to
512x384 before we measure the error metrics.
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4. Human Mesh Reconstruction
We provide a qualitative comparison to a state-of-the-art parametric human model fitting approach [7] on one of our videos.

As can be seen in Figure 5, the model fitting fails to capture the complex poses of the limbs of the the human. Parametric
model fitting also does not capture fine details such as clothes and hair.
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(a) Image (b) DMVS w/o depth cleaning (c) DMVS w/ depth cleaning

Figure 4: Effects of proposed depth cleaning method. See regions circled in yellow. Proposed depth cleaning method using
Eq. (1) in our main paper removes outliers of MVS depth DMVS significantly.
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(a) (b)

Figure 5: Human shape and pose estimation [7]: (a) the projected mesh outline marked in white on top of the image; (b, left)
view of the reconstructed mesh from the camera direction, (b, right) second view of the reconstructed mesh.
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